Hierarchical Semantic Composition Using High Dimensional Vectors and Random Indexing

Bob Berwick !

IMassachusetts Institute of Technology

Catherine Zeng !

Background

Modern developments in natural language processing are still bad at doing anything that involves
the hierarchical structures that people use, with most neural models such as recurrent neural net-
works (RNNs) being linear from end-to-end. A good language representation model should be
capable of encoding hierarchical linguistic structure. However, bag-of-words semantic vector rep-
resentations like LSA and Word2Vec fail to encode any structure outside of word order. Further,
the Word2Vecs views finding appropriate vector representations as an optimization problem, is
exceptionally computationally expensive, and introduces a batch process into the data flow.

Using random indexing and high-dimensional, sparse distributed vectors [2] enables many fea-
tures that align with linguistic intuition: concepts can be connected by short links in semantic
space because all vectors are quasiorthogonal, there is a high degree of tolerance for noise, and
analogical reasoning is possible through using Holographic Reduced Representations.

Further, there has been increasing evidence for the existence of high-dimensional, sparse binary
vectors in biological organisms. For example, in fruit fly olfactory circuits, 50-dimensional odorant
receptor neurons (ORNSs) in the fly's nose are connected to neurons that project to 2,000 Kenyon
cells by sparse, binary random connection matrices [1]. It has also been shown that the cerebellum
uses sparse, dimensionality expanding encoding, with large numbers of granule cells receiving few
inputs from "mossy fibers" and Purkinje cells receiving tens of thousands of inputs from "parallel
fibers" and a "climbing fiber".

Method

In order to associate compositional structures in distributed representations, convolution algebra
is used to form Holographic Reduced Representations [5] of word embeddings.

Symmetry preservation in convolutions allows the degree of similarity between two vectors to
be conserved when both are bound with the same binding. For example, if vectors for "red"
and "green" are similar, then the bindings red & apple and green @ apple would also be similar
by approximately the same degree. This symmetry preservation property is important because it
allows us to draw analogies between two word vectors based on similarity of fields.

Superimposing large numbers of bindings can cause inference that increases the amount of noise
resulting vectors have. Interference can be mitigated by increasing the number of dimensions
used for the binary vector.

Encoding & Decoding

= Encoding The encoding process uses superposition and binding to bind vectors into a
'memory trace", using addition and xor respectively. For example, the pattern
(yellow @ banana) + (red @ apple) can be used to represent the composition of two pairs
"vellow-banana and red-apple".

= Decoding The decoding process applies inverse convolution operations on a memory trace
and a single field to return a noisy version of what was associated with the field. For
example, yellow™! @ yellow @ banana =~ banana. In our case, the xor operator is invertible
(xor is its own inverse). Because the result is noisy, the dot-product is then used to find its
the closest association in memory space.

Generating Word Embeddings

Newly encountered words are generated a d dimensional random, binary vector containing —1s
and 1s (using —1 and 1 lets us use the multiplication operator for xor) that is stored as an envi-
ronment vector e;. Each newly generated word additionally is given a memory vector m; that is
the linear combination of the environment vectors of surrounding words multiplied by their part
of speech s; and their structural relationship r; (each of which is also symbolically represented by
a d dimensional random, binary vector of —1s and 1s).

The structural relationship r; is encoded as the movements needed to move from one word to
another on the parse tree hierarchically. For example, the movement required to move from one
leaf node to an adjacent leaf node when they have the same parent would be "up, down", which
would be encoded as "10" Similarly, if moving from one word to another requires moving up the
tree twice and then moving down three times, then the movement would be encoded as "11000".
These movements are symbolically represented by d dimensional random, binary vectors consist-
ing of —1s and 1s.

The word embedding rules are summarized as follows:

n
Cj:ZQZ'@Si@TZ’ (1)
1=1
mj = m; + ¢; (2)

Analogous Structures

The symmetry preservation property in convolutions allows us to apply analogical reasoning using
the word embedding structure. For example, if we want to find "mq iIs to es as mo is to what?"
given the following word embeddings:

mi:eimo:?
mi1 = (e1 ®s1Dry)+ (ea P s9d o)
mo = (e3® s1 B r1) + (e4 P 59D 19)

If we multiply the two memory vectors together, we get:
Finymy = (e1 @ e3) + (e2 @ e4) + noise

Taking this compositional vector, if we further multiply Fy,, m, by e2 to complete our analogy, we
get:

Finqms * €2 = noise + e4 + noise

Finally, we use the dot product to find the closest environment vector e4 to complete the analogy
that my :eo :: mo : ey.

Experiment

We used random indexing and 100, 000 dimensional vectors to generate word embeddings from
the Penn Treebank. Once the vector representations have been generated, we probe represen-
tations for analogies in the form "a is to b as ¢ is to what?" (a : b :: ¢ :7) by multiplying semantic
vectors together as described in the method section: a * b x ¢ =7. Retrieving each vector used in
the multiplication from memory space takes O(1) time. Once the noisy resultant vector is found,
using the dot product to compare it against stored word embeddings runs in O(n) time with n
being the number of words stored. All this we were able to do through direct manipulation of the
word embedding representative structure, entirely online and without any training process.

For the purpose of reproducibility, we've released our implementation at
github.com/yczeng/semantic-composition.

Results and Discussion

Gold Standard Parse Trees for 1,000 sentences from the British National Corpus were used to
generate word embeddings. Some results are shown in the table below:

mi 59 mo 7

shoes socks mosses ferns
canoes fleet elephants herd
resonant frequency magnetic field
basked glow luxuriating feel

Table 1: Analogy where my is to sy as ms is to what?

Unlike existing methods for generating word embeddings such as Word2Vec that uses a batch
training process, using high dimensional vectors and random indexing is computationally inexpen-
sive, online, and robust against noise. However, these word embeddings remain a static repre-
sentation, so no learning is going on. It would be interesting to see how these word embeddings
could interact in a dynamic manner to self-organize and update.

References

[1] Sanjoy Dasgupta, Charles F. Stevens, and Saket Navlakha.
A neural algorithm for a fundamental computing problem.
Science, 358(6364).793--796, 2017.

[2] Pentti Kanerva.
Hyperdimensional computing: An introduction to computing in distributed representation with high-dimensional random vectors.
Cognitive Computation, 1(2):139--159, 2009.

[3] Thomas K. Landauer and Susan T. Dumais.
A solution to platos problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge.
Psychological Review, 104(2):211--240, 1997.

[4] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean.
Distributed representations of words and phrases and their compositionality.
In Advances in Neural Information Processing Systems, pages 3111--3119, 2013.

[5] T. A. Plate.
Holographic reduced representations.
|IEEE Transactions on Neural Networks, 6:623--641, 1995.



