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Background

Modern developments in natural language processing are sধll bad at doing anything that involves

the hierarchical structures that people use, with most neural models such as recurrent neural net-

works (RNNs) being linear from end-to-end. A good language representaধon model should be

capable of encoding hierarchical linguisধc structure. However, bag-of-words semanধc vector rep-

resentaধons like LSA and Word2Vec fail to encode any structure outside of word order. Further,

the Word2Vecs views finding appropriate vector representaধons as an opধmizaধon problem, is

excepধonally computaধonally expensive, and introduces a batch process into the data flow.

Using random indexing and high-dimensional, sparse distributed vectors [2] enables many fea-

tures that align with linguisধc intuiধon: concepts can be connected by short links in semanধc

space because all vectors are quasiorthogonal, there is a high degree of tolerance for noise, and

analogical reasoning is possible through using Holographic Reduced Representaধons.

Further, there has been increasing evidence for the existence of high-dimensional, sparse binary

vectors in biological organisms. For example, in fruit fly olfactory circuits, 50-dimensional odorant

receptor neurons (ORNs) in the fly's nose are connected to neurons that project to 2,000 Kenyon

cells by sparse, binary random connecধonmatrices [1]. It has also been shown that the cerebellum

uses sparse, dimensionality expanding encoding, with large numbers of granule cells receiving few

inputs from "mossy fibers" and Purkinje cells receiving tens of thousands of inputs from "parallel

fibers" and a "climbing fiber".

Method

In order to associate composiধonal structures in distributed representaধons, convoluধon algebra

is used to form Holographic Reduced Representaধons [5] of word embeddings.

Symmetry preservaধon in convoluধons allows the degree of similarity between two vectors to

be conserved when both are bound with the same binding. For example, if vectors for "red"

and "green" are similar, then the bindings red ⊕ apple and green ⊕ apple would also be similar

by approximately the same degree. This symmetry preservaধon property is important because it

allows us to draw analogies between two word vectors based on similarity of fields.

Superimposing large numbers of bindings can cause inference that increases the amount of noise

resulধng vectors have. Interference can be miধgated by increasing the number of dimensions

used for the binary vector.

Encoding & Decoding

Encoding The encoding process uses superposiধon and binding to bind vectors into a

"memory trace", using addiধon and xor respecধvely. For example, the paħern

(yellow ⊕ banana) + (red ⊕ apple) can be used to represent the composiধon of two pairs

"yellow-banana and red-apple".

Decoding The decoding process applies inverse convoluধon operaধons on a memory trace

and a single field to return a noisy version of what was associated with the field. For

example, yellow−1 ⊕ yellow ⊕ banana ≈ banana. In our case, the xor operator is inverধble

(xor is its own inverse). Because the result is noisy, the dot-product is then used to find its

the closest associaধon in memory space.

GeneratingWord Embeddings

Newly encountered words are generated a d dimensional random, binary vector containing −1s
and 1s (using −1 and 1 lets us use the mulধplicaধon operator for xor) that is stored as an envi-

ronment vector ei. Each newly generated word addiধonally is given a memory vector mi that is

the linear combinaধon of the environment vectors of surrounding words mulধplied by their part

of speech si and their structural relaধonship ri (each of which is also symbolically represented by

a d dimensional random, binary vector of −1s and 1s).

The structural relaধonship ri is encoded as the movements needed to move from one word to

another on the parse tree hierarchically. For example, the movement required to move from one

leaf node to an adjacent leaf node when they have the same parent would be "up, down", which

would be encoded as "10". Similarly, if moving from one word to another requires moving up the

tree twice and then moving down three ধmes, then the movement would be encoded as "11000".

These movements are symbolically represented by d dimensional random, binary vectors consist-

ing of −1s and 1s.

The word embedding rules are summarized as follows:

cj =
n∑

i=1
ei ⊕ si ⊕ ri (1)

mi = mi + cj (2)

Analogous Structures

The symmetry preservaধon property in convoluধons allows us to apply analogical reasoning using

the word embedding structure. For example, if we want to find "m1 is to e2 as m2 is to what?"

given the following word embeddings:

m1 : e2 :: m2 :?
m1 = (e1 ⊕ s1 ⊕ r1) + (e2 ⊕ s2 ⊕ r2)
m2 = (e3 ⊕ s1 ⊕ r1) + (e4 ⊕ s2 ⊕ r2)

If we mulধply the two memory vectors together, we get:

Fm1,m2 = (e1 ⊕ e3) + (e2 ⊕ e4) + noise

Taking this composiধonal vector, if we further mulধply Fm1,m2 by e2 to complete our analogy, we

get:

Fm1,m2 ∗ e2 = noise + e4 + noise

Finally, we use the dot product to find the closest environment vector e4 to complete the analogy

that m1 : e2 :: m2 : e4.

Experiment

We used random indexing and 100, 000 dimensional vectors to generate word embeddings from

the Penn Treebank. Once the vector representaধons have been generated, we probe represen-

taধons for analogies in the form "a is to b as c is to what?" (a : b :: c :?) by mulধplying semanধc

vectors together as described in the method secধon: a ∗ b ∗ c =?. Retrieving each vector used in

the mulধplicaধon from memory space takes O(1) ধme. Once the noisy resultant vector is found,

using the dot product to compare it against stored word embeddings runs in O(n) ধme with n
being the number of words stored. All this we were able to do through direct manipulaধon of the

word embedding representaধve structure, enধrely online and without any training process.

For the purpose of reproducibility, we've released our implementaধon at

github.com/yczeng/semanধc-composiধon.

Results and Discussion

Gold Standard Parse Trees for 1,000 sentences from the Briধsh Naধonal Corpus were used to

generate word embeddings. Some results are shown in the table below:

m1 s2 m2 ?

shoes socks mosses ferns

canoes fleet elephants herd

resonant frequency magneধc field

basked glow luxuriaধng feel

Table 1: Analogy where m1 is to s2 as m2 is to what?

Unlike exisধng methods for generaধng word embeddings such as Word2Vec that uses a batch

training process, using high dimensional vectors and random indexing is computaধonally inexpen-

sive, online, and robust against noise. However, these word embeddings remain a staধc repre-

sentaধon, so no learning is going on. It would be interesধng to see how these word embeddings

could interact in a dynamic manner to self-organize and update.
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